Sumas y restas
Si no hay acarreos, es decir, si ninguna suma parcial es mayor que 9, las sumas se pueden realizar directamente. Lo mismo ocurre con las restas.En caso contrario, hay que saber modelar los números de los que se dispone, a veces convirtiendo una suma de dos números en una suma más sencilla de más sumandos, y algo análogo para las restas. Calculistas como Alberto Coto proponen realizar las sumas siempre de izquierda a derecha, aunque haya acarreos.
Ejemplos:
- Calcular 456 + 155:
- 456 + 155 = 461 + 150 = 511 + 100 = 611 (método tradicional, sumando de derecha a izquierda)
- 456 + 155 = 456 + 4 + 151 = 460 + 40 + 111 = 500 + 111 = 611 (llevando el primer sumando a la decena superior, a la centena superior... para acabar realizando una suma más sencilla equivalente a la primera)
- 456 + 155 = 556 + 55 = 606 + 5 = 611 (sumando de izquierda a derecha)
- Calcular 876 - 98:
- 876 - 98 = 868 - 90 = 778 (método tradicional, de derecha a izquierda)
- 876 - 98 = 876 - (100 - 2) = 876 - 100 + 2 = 776 + 2 = 778 (valiéndose de la proximidad del sustraendo (98) a uno que facilita la resta (100))
- 876 - 98 = 786 - 8 = 778 (restando de izquierda a derecha)
- Calcular 634 - 256:
- 634 - 256 = 434 - 56 = 384 - 6 = 378 (de izquierda a derecha)
Duplicación y mediación
Multiplicar por 2 es lo mismo que sumarle al número inicial el mismo número. La duplicación y la mediación son un pilar fundamental de las matemáticas egipcias.Ejemplo: multiplicar 173 × 16:
- Esto se puede hacer por duplicaciones sucesivas: 173 × 16 = 346 × 8 = 692 × 4 = 1384 × 2 = 2768.
Ejemplo: multiplicar 376 × 125
- Como 125 = 5³ = 10³/2³, se puede hallar la solución añadiendo los tres ceros correspondientes y dividiendo el resultado tres veces por 2.
- 376 × 125 = 376000/8 = 188000/4 = 94000/2 = 47000.
- 324 x 125 = 324000/8 = 162000/4 = 81000/2 = 40500.
También se puede utilizar este método para multiplicar por otros números que son sumas de (pocas) potencias de 2 o de 5, como 12 (8 + 4), 130 (125 + 5), 18 (16 + 2), etc.
Multiplicación por números cercanos a las potencias de 10
Multiplicar por 9, 11, 99, 101..., es decir, por una potencia de 10 menos 1, se puede hacer mentalmente con un poco de práctica mediante la suma (o resta) de 10n veces el número inicial más (o resta) del número inicial. Sin embargo, es fácil cometer errores al sumar o restar al mezclar, por ejemplo, unidades con decenas.Ejemplo: multiplicar 28 × 99
- 28 × 99 = 28 × (100 - 1) = 2800 - 28 = 2772
- 121 es el cuadrado de 11, así que lo que se pide es lo mismo que multiplicar 37 por 11 y el resultado de nuevo por 11: 37 × 121 = 37 ×(10 + 1) × 11 = (370 + 37) × 11 = 407 × 11 = 4477
Multiplicar:
- 12345 × 11 : 1° las unid 5, 5+4=9, 4+3=7, 3+2=5,2+1=3, y finalmente 1; ahora colocar en orden inverso : 135795
- 8946 × 11 : 1° las unid 6, 6+4=10 (0 y lleva 1), 4+9+1(acarreo)=14 (4 y lleva 1), 9+8+1(acarreo)=18 (8 y lleva 1), y finalmente 8+1(acarreo)=9; ahora colocar en orden inverso : 98406
Multiplicación por 37
Primero, basta recordar lo siguiente:- 37 × 3 = 111
- 37 × 27 = (37 × 3) × 9 = 999 = 1000 - 1
- Se divide el otro factor entre 3. Hay que recordar el cociente y el
resto. Si el resto es 1, al resultado final habrá que sumar 37; si es 2,
habrá que sumar 74.
- Ejemplo: en 37 × 94, se toma 94 : 3 = 31, resto 1. Ahora el producto es 111 × 31.
- Se divide el cociente del paso anterior entre 9. El cociente se multiplica por 999 (= 1000 - 1) y el resto por 111.
- En el ejemplo anterior, 31 : 9 = 3, resto 4. Ahora tenemos la suma de dos productos: 999 × 3 (= 2997, o, si se prefiere, 3000 - 3) y 111 × 4 = 444. Como el resto del primer cociente que hicimos era 1, al resultado habrá que sumar 37.
- Se suma todo.
- 3000 - 3 + 444 + 37 = 3000 + 444 + 37 - 3 (a menudo es más fácil organizar los términos de esta forma, dejando el número que se resta al final) = 3444 + 34 = 3478.
Más ejemplos:
- 37 × 54 = 111 × 18 = 999 × 2 = 2000 - 2 = 1998
- 37 × 79 (método usual) = 111 × 26 + 37 = 999 × 2 + 111 × 8 + 37 = 2000 - 2 + 888 + 37 = 2925 - 2 = 2923
- 37 × 79 (variante) = 111 × 27 - 74 = 999 × 3 - 74 = 3000 - 3 - 74 = 3000 - 77 = 2923
- Como se puede comprobar, en este caso la variante es más fácil, aunque no tiene por qué ser siempre así. En general, si el factor es uno o dos menos que un múltiplo de 27 (recordar que 37 × 27Q = 999Q), es más sencillo ir a por ese múltiplo de 27.
- 74 × 74 = 37 × 2 × 74 = 37 × 148 = 111 × 49 + 37 = 999 × 5 + 111 × 4 + 37 = 5000 - 5 + 444 + 37 = 5444 + 32 = 5476
- 111 × 111 = 37 × 3 × 111 = 37 × 333 = 999 × 12 + 333 = 12000 - 12 + 333 = 12321 (en este caso, como ya teníamos el 333, el procedimiento era más sencillo)
- 148 × 148 = 37 × 4 × 148 = 37 × 592 = 111 × 198 - 74 (en este caso se vuelve a emplear la variante porque 594 es múltiplo de 27) = 999 × 22 - 74 = 22000 - 22 - 74 = 21904
- 142857 × 1 = 142857
- 142857 × 2 = 285714
- 142857 × 3 = 428571
- 142857 × 4 = 571428
- 142857 × 5 = 714285
- 142857 × 6 = 857142
- 142857 × 142857 = (142857 × 7) × (142857 : 7) = 999999 × 20408 + 142857 (Como el resto de 142857 : 7 da 1, al resultado de la multiplicación hay que sumarle 142857. Es lo mismo que se hacía en la multiplicación por 37) = (1.000.000 - 1) × 20.408 + 128.857 = 20.408.000.000 - 20.408 + 142857 = 20.408.000.000 + 122.449 = 20.408.122.449
Igualdades notables y cálculo de cuadrados
Las llamadas igualdades notables pueden aplicarse al cálculo mental:- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b) (a - b) = a² - b²
Cálculo del cuadrado de un número cualquiera de dos cifras
Las dos primeras identidades se pueden aplicar al cálculo de cuadrados perfectos. Supongamos que queremos calcular 52². 52 = 50 + 2, así que aplicamos la identidad correspondiente al cuadrado de la suma, donde a = 50 y b = 2.- (50 + 2)² = 50² + 2 × 2 × 50 + 2² = 2500 + 200 + 4 = 2704
- 17² = (10 + 7)² = 10² + 2 × 7 × 10 + 7² = 100 + 140 + 49 = 289
- 76² = (70 + 6)² = 70² + 2 × 6 × 70 + 6² = 4900 + 840 + 36 = 5776
- 95² = (90 + 5)² = 90² + 2 × 5 × 90 + 5² = 8100 + 900 + 25 = 9025
- 2,4² = (2 + 0,4)² = 0,1² × 14² = 0,01 × (20² + 2 × 4 × 20 + 4²) = 0,01 × (400 + 160 + 16) = 0,01 × 576 = 5,76
Algoritmo idem, para los que empieza con 5.- (5*10+u)^2 =(25+u) y u^2; ejemplo: 53^2= (25+3) y 3^2 = 2809
Algoritmo idem, para los que empiezan con 9.- (9*10+u)^2= (80+2u)y(10-u)^2; ejemplo: 96^2=(80+2*6)y(10-6)^2= 92y16= 9216
Algoritmo idem,para los de tres cifras que empieza con 10.- (10*10+u)^2= (100+2u)y u^2; ejemplo 108^2= (100+2*8)y8^2 = 116y64= 11664
Algunos calculistas conocen de memoria las tablas de multiplicar del 1 al 100, por lo que pueden utilizar este método fácilmente para hallar el cuadrado de un número de cuatro cifras o más. Esto sólo se consigue tras mucho entrenamiento, pero simplifica enormemente el cálculo como se puede observar:
- 5782² = (5700 + 82)² = 5700² + 2 × 82 × 5700 + 82² = 32.490.000 + 934.800 + 6.724 = 33.431.524
Producto de dos números que equidistan de un número cuyo cuadrado es conocido
El número cuyo cuadrado es conocido generalmente será uno acabado en 0. Por ejemplo, a la hora de calcular 58 × 62 nos apoyaremos en el 60, ya que ambos están a la misma distancia (2 unidades) de 60. Aquí se puede utilizar la tercera identidad, la del producto de suma por diferencia, donde a = 60 y b = 2.- (60 + 2) (60 - 2) = 60² - 2² = 3600 - 4 = 3596
- 77 × 83 = (80 - 3) (80 + 3) = 6400-9= 6391
- 95 × 105 = (100 - 5) (100 + 5) = 10000-25= 9975
- 128 × 152 = (140 - 12) (140 + 12) = 19600-144= 19456
Cuadrado de un número acabado en 5
El cálculo del cuadrado de un número que acabe en 5 puede simplificarse utilizando la tercera identidad. Aquí a será el número inicial (por ejemplo, 65), y b = 5:- (a + 5) (a - 5) = a² - 25
- (a + 5) (a - 5) + 25 = a²
- 65² = 70 × 60 + 25 = 4200 + 25 = 4225.
- 35 × 35 = 40 × 30 + 25 = 1225
- 105 × 105 = 110 × 100 + 25 = 11025
- 255 × 255 = 260 × 250 + 25 = 65025
- En este último caso, para calcular 260 × 250 se puede optar por formularlo de esta manera: 260 × 250 = (250 + 10) × 250 = 250² + 2500, y ya sabemos calcular con facilidad 250², así, quedaría 62500 + 2500 + 25 = 65025.
Cubos y potencias superiores
El cálculo de cubos y potencias superiores mediante el uso de igualdades notables es progresivamente más difícil, y a menudo es más sencillo hallar la cuarta potencia de un número como el cuadrado de su cuadrado:- 954 = (95²)² = 9025² = (9000 + 25)² = 9000² + 2 × 25 × 9000 + 25² = 81.000.000 + 450.000 + 625 = 81.450.625 (Facilita mucho el cálculo el hecho de que la segunda cifra de 9025 sea un cero)
Cálculo de logaritmos (en base 10)
Para aproximar el logaritmo común o en base 10 con una o dos cifras significativas, se requiere conocer algunas propiedades de los logaritmos y la memorización de algunos logaritmos. En particular, es necesario saber lo siguiente:- log(ab) = log(a) + log(b)
- log(a : b) = log(a) - log(b)
- log(0) si existe
- log(1) = 0
- log(2) ~ 0,33
- log(3) ~ 0,48
- log(7) ~ 0,85
- log(10) = 1
- Si a > b, forzosamente log(a) > log (b). En lenguaje matemático, se dice que la función logaritmo es creciente.
- log(1) = 0
- log(2) ~ 0,30
- log(3) ~ 0,48
- log(4) = log(2 × 2) = log(2) + log(2) ~ 0,60
- log(5) = log(10 : 2) = log(10) - log(2) ~ 0,70
- log(6) = log(2 × 3) = log(2) + log(3) ~ 0,78
- log(7) ~ 0,85
- log(8) = log(2 × 2 × 2) = log(2) + log(2) + log(2) ~ 0,90
- log(9) = log(3 × 3) = log(3) + log(3) ~ 0,96 (en realidad, se acerca más a 0,95)
- log(10) = 1
El mismo proceso se puede emplear para calcular el logaritmo de un número entre 0 y 1. Por ejemplo, 0,045 en notación científica se expresa como 4,5 × 10-2. Hay que tener cuidado con este exponente, que es negativo. Esto dará lugar al resultado log(0,045) ~ 0,65 - 2 = -1,35.
Otro método es calcular el logaritmo del número a partir de una factorización de números cuyos logaritmos sean conocidos. En el ejemplo anterior, 45 = 9 × 5, por tanto, log(45) = log(9) + log(5) ~ 0,96 + 0,70 = 1,66.
Verificar el resultado
Hay varias formas de comprobar si el resultado al que se ha llegado es el correcto:- Orden de magnitud: Si, tras multiplicar dos números menores de 100, el resultado es mayor de 10.000, seguro que hay algún problema. En una multiplicación de dos factores, hay que comprobar que el resultado tiene un número de cifras igual, o una unidad mayor (según el caso) que la suma de las cifras de los factores. A menudo los errores en el orden de magnitud se deben a una mala posición de uno de los números a la hora de sumar los productos parciales. Por ejemplo, multiplicar 65 × 205 en lugar de 65 × 25, o viceversa.
- Cifra de las unidades: Consiste en comprobar que la última cifra del resultado es correcta vista la última cifra de cada uno de los números con que se parte. Por ejemplo, 73 × 64 debe terminar en 2, ya que 3 × 4 = 12. Esta verificación permite conocer una cifra con certeza.
- Prueba del nueve: Esta verificación se basa en la suma de las cifras de cada uno de los factores y del resultado hasta que sólo queden números de una cifra. Por ejemplo, si nos queda 73 × 64 = 4662, podemos comprobar si es cierto sumando las cifras de cada uno de los números:
-
- 7 + 3 = 10, 1 + 0 = 1
- 6 + 4 = 10, 1 + 0 = 1
- 4 + 6 + 6 + 2 = 18, 1 + 8 = 9
- Sin embargo, 1 × 1 no es igual a 9, así que el resultado no es correcto. Habría que revisar de nuevo la multiplicación o realizarla de nuevo. (El resultado correcto es 4672) Este método es bueno para detectar errores de acarreo.
Conclusión
En general, el cálculo mental consiste en modelar los números de la forma más conveniente para realizar las operaciones prescritas. Para desarrollar una mayor agilidad en el cálculo mental, es útil:- Conocer algunas potencias de números pequeños, como 2, 3 y 5. En muchos casos, un producto se puede escribir de otra forma más conveniente si se juega con los factores. Por ejemplo, 65 × 27 es más fácil de calcular si se entiende el producto por 27 como productos sucesivos por 3.
- Conocer algunos cuadrados y saber utilizar las igualdades notables y la propiedad distributiva de la multiplicación para simplificar el cálculo. Por ejemplo, 13 × 18 es lo mismo que 13 × (17 + 1) = 13 × 17 + 13. Mediante las igualdades notables, 13 × 17 = 225 - 4 = 221, así que el resultado final es 234.